
An Optimized Slicer For 3D Printing

Xinqi Bao, Dov Kruger

1. Abstract

In order to print a 3D model, it must be analyzed, cut into slices and each
slice must generate gcode instructions that a 3D printer can execute. XbSlicer
is a high-performance slicing program implemented in C++, attempting to im-
prove performance and reliability of printing. Existing open source slicers such
as Cura, Slic3r, and MatterControl are too slow. These three are related be-
cause they are all coded in C# and share the same code base. They all crash
on large, complex models. XbSlicer uses optimal algorithms to split the model
into layers and print by reducing total motion of the print head.

The implementation of slicing is so efficient that profiling revealed I/O stan-
dard library functions took 20 percent of runtime. An efficient method using
buffers and low layer code has been implemented. As a result of these op-
timizations, XbSlicer is 20-25 times faster than these open source slicers and
successfully handles large, complex models.

The majority of models today are stored as STL in either ASCII or binary.
STL is inherently inefficient because points are repeated multiple times. Support
has been added for different file types. A new file type, BIF will be implemented
in the future to reduce redundant points. The result should reduce reading by
factor of 2 and eliminate computation to determine equivalent points.

2. Introduction

The technology of 3D printing is increasingly popular. The biggest advantage
compared with the traditional manufacture is rapid prototyping and reducing
material waste. For some complex models, 3D printing technology also can print
objects that cannot be produced any other way.

There are three major open source packages for slicing: Cura, Slic3r, and
MatterControl. All three are slow, take minutes to slice big files, and often crash
on large models.

Figure 1 shows an inefficient path example from model ”Bunny” using Mat-
terControl. It goes around the object, with a great deal of wasted motion. This
paper describes the optimizations that make XbSlicer faster, as well as gener-
ating a better, but still not perfect path. The analysis of each layer attempts
to define an optimal path for printing. Figure 2 shows the efficient path using
XbSlicer. It saves time for not only slicing, but also printing.

Preprint submitted to Elsevier December 14, 2019



Figure 1: Inefficient path in MatterControl Figure 2: Efficient path in XbSlicer

The main process is getting triangles from the model, calculating each layer’s
lines which intersected with triangles, making and filling loops, and generating
to gcode. The whole program structure shown in Figure 3.

Figure 3: Object structure of XbSlicer

Comparing with MatterControl, XbSlicer can do the same job much faster,
and won’t crash.

3. Previous work

Jing Hu introduced a framework about layer contour reconstruction algo-
rithms by STL-based slicing process for 3D printing [1]. The experimental
results by the traditional uniform slicing show the contour outline of each layer

2



and comparison among the different slicing thickness of the cutting z-plane.
Fabian Schurig also used this same idea but in different algorithms in staircases
[2].

S.H.Choi et al. presented a memory efficient tolerant-slicing algorithm [3][4].
Instead of storing the whole model into the computer memory, it reads only the
facets of the current layer, hence greatly reduces the amount of computer mem-
ory required and involves less computationally intensive searching operations.

Rodrigo Minetto and his team described an algorithm for slicing an unstruc-
tured triangular mesh model by series of parallel planes. They also described an
asymptotically optimal linear time algorithm for constructing a set of polygons
from the unsorted lists of line segments produced by the slicing step [5].

Current open source slicers: Cura (created in 2016), MatterControl (created
in 2015), and Slic3r (created in 2011) provided the idea of the whole process
about slicing. They have been covered to handle the most models in normal
task.

4. Reading Model Files

3D models consist of triangles. By reading models, it’s actually reading
triangles and storing them into memory. The standard file for 3D model printing
is called STL. There are two versions, ASCII and binary.

ASCII format takes the following form:

Figure 4: Format of ASCII STL file

The first and the last line appear only once. The first line contains the name
of the model. There will be many facets. Each facet consists of a normal and
three vertexes. Three vertexes represent as a triangle, and the normal vector
decide which side of triangle is outside for this model.

The binary file is similar but without meta data:

3



Figure 5: Format of Binary STL file

The first 80 characters are just comment. Since ASCII STL starts with the
word ”solid”, binary STL should never start with ”solid” because that identifies
ASCII file format.

The comment is a 4 bytes little-endian integer specifying the number of
triangles in this file. With this information, a simple loop can be used to read
all triangles in the file.

Each triangle is described by 50 bytes. Similar to the ASCII format, there
are four 3D vectors for each triangle, three for the vertexes and one for the
normal vector. In other words, 12 little-endian floats (48 bytes), and 2 bytes
undefined. The last two bytes in each triangle are reserved for attribute. It can
be the color of this triangle or something else.

4.1. Benefits for reading binary STL file
Binary files are much smaller than ASCII files. The size by itself makes

binary STL faster.
In ASCII files, numbers are represented as strings. However, in addition,

the program must to read in strings, and convert to double. Since model files
can be quite large, this can take a significant amount of time. Furthermore,
each triangle must be checked first. Only after ensuring it is a triangle, can it
be read in and stored.

In binary files, the number of triangles for the model is known because it is
stored in the header. Therefore, an array of triangles can be pre-allocated for
greater speed, and no formatting is done.

4.2. Improved Format for Model File
A new format has been designed for this program: BIF (Binary Indexed

Format).

Figure 6: BIF Format Figure 7: Point shared by multiple triangles

4



The set of all points in the model is first defined. Triangles consist of 3
indices identifying which points are in each triangle, shown in Figure 6. Since
BIF stores each point only once, and STL often has 3 to 6, a factor of 2 reduction
in size is expected. Point shared by multiple triangles shown in Figure 7.

5. Slicing

5.1. Intersections

Once the triangles are loaded in RAM, the layers must be computed. Since
slicing a particular layer, the Z value is known. The intersections crossed by
triangles and layer can be calculated.

Triangles can intersect each layer in different ways, shown in Figure 8.

Figure 8: different positions for layer and triangles

Case 1:

The minimum or maximum do not match the height, no intersection.

Case 2:

Crossing by one vertex, not count.

Case 3:

Two edges crossing the layer, calculate the intersection and push to object.

Case 4:

Crossing by one vertex and one edge.

Case 5:

One of the edges is on the layer. Have to check if the same intersection exists
in the object already, if not, add to it.

After calculating all the intersections for the layer, link them to form closed
loops. Layer may contain several loops, each loop represented as an object
separately.

5



5.2. Assign triangles

Typically, for a particular layer, not all the triangles are necessary to be
checked, only those have potential to cross the layer should. By assigning trian-
gles, push every potential triangle into groups with different range of Z value.
Triangles may cross more than one group. Shown in Figure 9, set the bigger
one triangle into group 0, 1, and 2, and the smaller one only into group 1.

Figure 9: Assign triangles

6. GCode

Gcode is the command used by 3D printers and CNC. The major commands
used in 3D printers are G0 and G1, with parameters X, Y, Z, F, and E. G0 tells
the printer to move to a position without extruding material. G1 means moving
and extruding. X, Y, and Z are the coordinate values. F represents the speed
for printing head to move. E is the value of extruder position.

In G1 command, there must be an E value greater than its previous value
instructing the printer to extrude filament.

∆E = distance(old(X,Y ), new(X,Y )) ∗ factor

6.1. The idea to generate gcode

For each layer, the minimum and maximum X and Y are known. First the
contours of each loop are printed. In order to fill the inside of each loop, a line
parallel to the Y axis is scanning through the minimum X to maximum, shown
in Figure 10.

6



For each position, several points can be computed out by crossing with loops.
Using G1 command to connect first two points, then G0, G1 and go on, shown
as Figure 11.

Figure 10: crossing with loops Figure 11: generate G0 and G1 commands

6.2. Loop by loop

However, this traditional solution might not be efficient for actual printing.
Shown as Figure 12, lots of G0 commands have been used in this layer, which
are doing nothing but moving around. An optimized algorithm has been im-
plemented to reduce these, by printing loop by loop instead all the loops at the
same time.

By defining loop and subloops structure to split separate loops. Subloops
are filled with container loop following the traditional method. Once finished a
container loop, it will go to the next loop which is the closest one. The result
shown in Figure 13.

Figure 12: traditional way to print a layer Figure 13: loop by loop algorithm to print a layer

6.3. Assign intersections

Similar method with assigning triangles, intersections also can be assigned
to several groups by the range of X. Then only the partial of intersections is
computed.

7



7. Implementations

7.1. High-Performance binary I/O

For the highest performance to read binary files, a custom buffer class is
used to load entire blocks directly from the hard drive. Since each triangle is
known to be exactly 50 bytes, this saves much time on reading.

Shown as Figure 14, there is buffer and prebuffer in this block. Prebuffer is
a memory right before the buffer. Triangles are read from the buffer until only
a fractional part remains. Then move the remaining part into prebuffer, and
load next block to buffer.

Figure 14: Buffer for reading

While reading the triangles, the Slicer object calculates the minimum and
maximum for X, Y, and Z of the model. The reason for doing this is to center
the whole model on the printer.

7.2. Writing buffer

The writing buffer is similar to the reading buffer. It has a buffer and post
buffer, shown in Figure 15.

Figure 15: Buffer for writing

Writing characters into buffer, until the writing pointer is over the buffer
range and into the post buffer, flush the buffer to hard drive, then move the
over part in post buffer to buffer.

In order to test performance of this writing buffer, 10 million random double
numbers have been written, and the running speed is 84 MB/s. On the same
device, the direct writing to drive speed is 405 MB/s. Even this buffer has to
turn double value to string firstly, that means more work have to be done than
direct writing, the performance is still great.

8



7.3. Custom double to string

A bunch of double values are written to the file, they have to be converted
into string type before output. The to string() function in c++ library has been
used in first place, but it is not efficient enough. Each time calling to string()
function, it will allocate a memory for string, then copy it into buffer. It is
unnecessary for this extra memory, no doubt it would take more time. A faster
way has been implemented to put the result into buffer directly. Figure 16 shows
the profile by using to string() function.

Figure 16: Profile by using library function Figure 17: Profile by using custom function

The optimized function reads the exponent from binary double format. Get-
ting 3 digits each time, searching in an array and getting characters for each
digit. The exactly 6 digits in decimal number will be written into gcode file.

Figure 18: Binary double format

realvalue = (−1)sign(1.b51b50. . . b0)2 ∗ 2e−1023

Once having the exponent e, the number is kwon in the range 2e−1023 to
2e−1022. Then split it into integer and decimal, write separately. An array of
characters has been hard code, which contains all the digits for 0 to 999. Using
three digits as index, get the digits from array and write them directly into
buffer.

These two different methods have been tested on writing 10 million random
double numbers. As the result, the new method runs 20 times faster than
to string() function. The profile by using this custom function shown in Figure
17.

7.4. Multithreads

Multithreads have been implemented for XbSlicer. Multithreads will help
CPU usage covered more efficient. As the result, XbSlicer has been speeded up
by 1.97, 2.63, and 3.57 times for using 2, 4, and 8 threads.

9



8. Results

The final profile for XbSlicer shown in Figure 19.

Figure 19: Profile for XbSlicer

Comparing XbSlicer with three major open source slicers, three different
models have been tested, which are ellipticalvase, liberty, and bunny.

Figure 20: Test models: ellipticalvase, liberty, and Bunny

Table 1: Time consuming on three test models sliced by different slicers
time/s ellipticalvase liberty Bunny

XbSlicer 3.914 0.210 0.736
MatterControl 30.96 8.50 42.17

Cura 10.16 6.65 9.86
Slic3r 14.68 7.59 35.56

Table 1 shows the time consuming on different models and different slicers.
In these three test models, the ellipticalvase stored as an ASCII STL, reading

10



the file dominates the time, which makes less speeding up by XbSlicer. The
other two models are both in binary.

In average, to slice two binary models, XbSlicer is 37.88 times faster than
open source slicers. For the ASCII model, it still runs 4.75 times faster.

9. Improvements

The optimization used in loop by loop method is not the best. It can only
optimize some part of the scenarios, shown in Figure 21.

Figure 21: Defects of loop by loop algorithm

In the left area, it still using G0 between loops. Which means these loops are
not following the way they supposed be. The reason is even they are separate
visually, they are contained as subloops in one big loop. The algorithm deter-
mines subloops by their minimum and maximum X and Y instead of shapes.
Simply described in Figure 22. The algorithm has to be improved. Nevertheless,
the current method optimizes some scenarios, which is better than nothing.

11



Figure 22: Example for algorithm’s defect Figure 23: Big loop with only one subloop

On the other hand, the subloops within big loop, are still handled the tra-
ditional way, shown as the right area in Figure 21. The inside small loops are
empty. The best result is without using G0 commands for these empty areas,
only go through where has to be extruded.

For one case, if the loop only contains one subloop, shown in Figure 23.
When generating gcode, it can use a stack to store the G1 commands for the
bottom part. Then pop them after upper commands. However, when loop
contains more subloops, it would turn to be more complex.

Also, the extrude value is computed using distance times a factor in this
slicer. The exact amount of extrusion is critical for the quality of the resulting
part and is still being studied.

10. Future work

The BIF format replacing STL files has to be tested. Further improvements
are possible. A senior design team will work on it based on the current work.
Also, to fill loops, more patterns and different angle options should be imple-
mented.

The Hydra project began as an exploration of using Multi-headed printer to
speed up the printing process. This work will continue.

Some models require support material to help to hold the object, in place
which it is being printed. The senior design team is extending that work.

XbSlicer demonstrates how much current slicers can be improved. We hope
that it will become an option for improved opensource 3D printing.

11. Acknowledgements

The author would like to thank Prof. Min Song from Department of Electri-
cal & Computer Engineering at Stevens Institute of Technology for supporting
the working space on which this research is been done. Thank Courtney Walsh,
Research & Instructional Services Librarian at Stevens Institute of Technology

12



for her citation help. Also, thank Writing & Communications Center (WCC)
at Stevens Institute of Technology for their writing advice.

12. References

[1] Hu, J. (2017). Study on stl-based slicing process for 3d printing. Paper
presented at the 2017 Annual international solid freeform fabrication symposium
on University of Texas at Austin, 885-895.

[2] Schurig, F. (2015). Slicing Algorithms for 3D-Printing. Retrieved from
https://blog.hk-fs.de/wp-content/uploads/2015/08/Paper Fabian Schurig 3D Printing.pdf

[3] Choi, S., & Kwok, K. (1999, August). A memory efficient slicing algo-
rithm for large stl files. Paper presented at the 1999 Annual international solid
freeform fabrication symposium on University of Texas at Austin, 155-162.

[4] Choi, S., & Kwok, K. (2002). Hierarchical slice contours for layered-
manufacturing. Computers in Industry, 48(3), 219-239.

[5] Minetto, R., Volpato, N., Stolfi, J., Gregori, R., & Da Silva, M. (2017).
An optimal algorithm for 3d triangle mesh slicing. Computer-Aided Design, 92.

[6] XbSlicer GitHub repository: https://github.com/XinqiBao/XbSlicer

13


